

Part II Algebraic Topology – Example Sheet 4

Michaelmas 2025

Ailsa Keating

Questions marked * are optional and should only be attempted after non-starred questions.

1. For each of the following exact sequences of abelian groups and homomorphisms say as much as possible about the unknown group A and homomorphism α .

- (i) $0 \rightarrow \mathbb{Z}/2 \rightarrow A \rightarrow \mathbb{Z} \rightarrow 0$,
- (ii) $0 \rightarrow \mathbb{Z}/2 \rightarrow A \rightarrow \mathbb{Z}/2 \rightarrow 0$,
- (iii) $0 \rightarrow A \rightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \rightarrow \mathbb{Z}/2 \rightarrow 0$,
- (iv) $0 \rightarrow \mathbb{Z}/3 \rightarrow A \rightarrow \mathbb{Z}/2 \rightarrow \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \rightarrow 0$.

2. Consider a commutative diagram

$$\begin{array}{ccccccc}
 A_1 & \xrightarrow{f_1} & A_2 & \xrightarrow{f_2} & A_3 & \xrightarrow{f_3} & A_4 \xrightarrow{f_4} A_5 \\
 \downarrow h_1 & & \downarrow h_2 & & \downarrow h_3 & & \downarrow h_4 & & \downarrow h_5 \\
 B_1 & \xrightarrow{g_1} & B_2 & \xrightarrow{g_2} & B_3 & \xrightarrow{g_3} & B_4 \xrightarrow{g_4} B_5
 \end{array}$$

in which the rows are exact and each square commutes. If h_1, h_2, h_4 , and h_5 are isomorphisms, show that h_3 is too.

3. Let K be a simplicial complex in \mathbb{R}^m , and consider this as lying inside \mathbb{R}^{m+1} as the vectors of the form $(x_1, \dots, x_n, 0)$. Let $e_+ = (0, \dots, 0, 1) \in \mathbb{R}^{m+1}$ and $e_- = (0, \dots, 0, -1) \in \mathbb{R}^{m+1}$. The *suspension* of K is the simplicial complex in \mathbb{R}^{m+1}

$$SK := K \cup \{\langle v_0, \dots, v_n, e_+ \rangle, \langle v_0, \dots, v_n, e_- \rangle \mid \langle v_0, \dots, v_n \rangle \in K\}.$$

- (a) Show that SK is a simplicial complex, and that if $|K| \cong S^n$ then $|SK| \cong S^{n+1}$.
- (b) Using the Mayer–Vietoris sequence, show that if K is connected then $H_0(SK) \cong \mathbb{Z}$, $H_1(SK) = 0$, and $H_i(SK) \cong H_{i-1}(K)$ if $i \geq 2$.
- (c) If $f : K \rightarrow K$ is a simplicial map, let $Sf : SK \rightarrow SK$ be the unique simplicial map which agrees with f on the subcomplex K and fixes the points e_+ and e_- . Show that under the isomorphism in (ii), the maps f_* and Sf_* agree. [Hint: It may help to describe the isomorphism in (ii) at the level of chains.]
- (d) Deduce that for every $n \geq 1$ and $d \in \mathbb{Z}$ there is a map $f : S^n \rightarrow S^n$ so that f_* induces multiplication by d on $H_n(S^n) \cong \mathbb{Z}$.

4. If K is a simplicial complex with $H_i(K) \cong \mathbb{Z}^r \oplus F$, for F a finite abelian group, show that $H_i(K; \mathbb{Q}) \cong \mathbb{Q}^r$. [Hint: There is a chain map $C_\bullet(K) \rightarrow C_\bullet(K; \mathbb{Q})$.]

5. By describing a triangulation of S^n which is preserved under the antipodal map, show that \mathbb{RP}^n has a triangulation. [Be careful that the triangulation you describe actually comes from a simplicial complex! Some subdivision may be necessary.] Using the Mayer–Vietoris sequence, show that there is an exact sequence

$$0 \rightarrow H_n(\mathbb{RP}^n) \rightarrow \mathbb{Z} \rightarrow H_{n-1}(\mathbb{RP}^{n-1}) \rightarrow H_{n-1}(\mathbb{RP}^n) \rightarrow 0$$

and that $H_i(\mathbb{RP}^{n-1}) \rightarrow H_i(\mathbb{RP}^n)$ is an isomorphism for $i < n - 1$. Hence show that

$$H_i(\mathbb{RP}^n) \cong \begin{cases} \mathbb{Z} & \text{if } i = 0 \text{ or if } i = n \text{ and } n \text{ is odd} \\ \mathbb{Z}/2 & \text{if } i \text{ is odd and } 0 < i < n \\ 0 & \text{otherwise.} \end{cases}$$

Deduce that \mathbb{RP}^{2k} does not retract onto \mathbb{RP}^{2k-1} , and that any map $f : \mathbb{RP}^{2k} \rightarrow \mathbb{RP}^{2k}$ has a fixed point.

6. Let A be a 2×2 matrix with entries in \mathbb{Z} . Show that the linear map $A : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ preserves the equivalence relation $(a, b) \sim (a', b') \iff (a - a', b - b') \in \mathbb{Z}^2$, and so induces a continuous map f_A from the torus T to itself. Compute the effect of the continuous map f_A on the homology of T .
7. For triangulated surfaces X and Y , let $X \# Y$ be the surface obtained by cutting out a 2-simplex from both X and Y and then gluing together the two copies of $\partial\Delta^2$ formed. Use the Mayer–Vietoris sequence to compute the homology of $\Sigma_g \# S_n$, and hence deduce that it is homeomorphic to S_{n+2g} .
8. Let $p : \tilde{X} \rightarrow X$ be a finite-sheeted covering space, and $h : |K| \rightarrow X$ a triangulation. Show that there is an $r \geq 1$ and triangulation $g : |L| \rightarrow \tilde{X}$ so that the composition $h^{-1} \circ p \circ g : |L| \rightarrow |K^{(r)}|$ is a simplicial map. If p has n sheets, show that $\chi(\tilde{X}) = n \cdot \chi(X)$. Hence show that Σ_g is a covering space of Σ_h if and only if $\frac{1-g}{1-h}$ is an integer. [Hint: If $g = 1 + k \cdot (h - 1)$, show that \mathbb{Z}/k acts freely and properly discontinuously on a particular orientable surface of genus g , and identify the quotient.]
9. Let $p : S^{2k} \rightarrow X$ be a covering map, $G = \pi_1(X, [x_0])$, and recall that G then acts freely on S^{2k} . Show that for any $g \in G \setminus \{e\}$ the map $g_* : H_{2k}(S^{2k}) \rightarrow H_{2k}(S^{2k})$ is multiplication by -1 . Deduce that G is either trivial or $\mathbb{Z}/2$, and that \mathbb{RP}^{2k} is not a proper covering space of any other space.
10. If $f : K \rightarrow K$ is a simplicial isomorphism, let $X \subset |K|$ be the fixed set of $|f|$ i.e. $\{x \in |K| \mid |f|(x) = x\}$. Show that the Lefschetz number $L(f)$ is equal to $\chi(X)$. [Hint: Barycentrically subdivide K so that X is the polyhedron of a sub simplicial complex.]

Comments or corrections to amk50@cam.ac.uk.